Terceira Lista 1°/2010

Thadeu Penna

7 de julho de 2010

3ª Lista

- 1. Considere um sistema de duas partículas, cada uma podendo ocupar um dos três estados de níveis $0, \varepsilon, 3\varepsilon$, em contato com um banho térmico na temperatura T. Escreva as funções partição se as partículas forem distinguíveis, bósons e férmions.
- 2. A partir da relação termodinâmica TdS = dE + pdV para um gás de fótons, considerando E = uV e p = 1/3 u, escreva dS em termos de dT e dV. Encontre $(\partial S/\partial T)_V$ e $(\partial S/\partial V)_T$. A partir de $(\partial^2 S/\partial V\partial T) = (\partial^2 S/\partial T\partial V)$, encontre a equação diferencial que pode ser integrada para encontrar $u \propto T^4$.
- 3. Encontre $\overline{v_x}, \overline{v_x^2}$ para um gás de Fermi, em T = 0. Encontre \overline{E} . Escreva \overline{E} em termos de μ . A partir de \overline{E} , obtenha a pressão média de um gás de Fermi confinado em um volume V.
- 4. O grande potencial termodinâmico Φ é definido como $\Phi = -k_BT \ln Z$. Escreva Φ em função da ocupação, para bósons e férmions. Encontre a expressão da entropia de um gás ideal em função da ocupação.
- 5. Mostre que não é possível obter a condensação de Bose-Einstein em duas dimensões.
- 6. Encontre o número de fótons, por unidade de volume, no espaço, considerando T = 3K. A integral $(\int_0^\infty dx \, x^2/(e^x 1))$ pode ser aproximada por 2.4.
- 7. Calcule a energia média por partícula, para um gás ideal de férmions não relativísticos e ultrarrelativísticos, em função da energia de Fermi, em T=0.
- 8. Encontre a expressão equivalente à lei de Stefan-Boltzmann para um espaço de *D* dimensões.